Method to study cell migration under uniaxial compression
نویسندگان
چکیده
منابع مشابه
Method to study cell migration under uniaxial compression
The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, ...
متن کاملThe Nanocrystal Superlattice Pressure Cell: A Novel Approach To Study Molecular Bundles under Uniaxial Compression
Ordered assemblies of inorganic nanocrystals coated with organic linkers present interesting scientific challenges in hard and soft matter physics. We demonstrate that a nanocrystal superlattice under compression serves as a nanoscopic pressure cell to enable studies of molecular linkers under uniaxial compression. We developed a method to uniaxially compress the bifunctional organic linker by ...
متن کاملBuckling of Ge nanowires under uniaxial compression
Molecular dynamics simulations are performed to investigate the buckling properties of [100]-, [110]-, [111]-, and [112]-oriented single-crystalline germanium nanowires under uniaxial compression. The effects of simulation temperature, strain rate, and wire length on the buckling behaviour are investigated. The simulation results indicate that critical load clearly decreases with increasing tem...
متن کاملHigh strain-rate behavior of ice under uniaxial compression
In the present study, a modified split Hopkinson pressure bar (SHPB) is employed to investigate the dynamic response of ice under uniaxial compression in the range of strain rates from 60 to 1400 s 1 and at initial test temperatures of 10 and 30 C. The compressive strength of ice shows positive strain-rate sensitivity over the range of strain rates employed; a slight influence of ice microstruc...
متن کاملDeformation Behavior of Human Dentin under Uniaxial Compression
Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology of the Cell
سال: 2017
ISSN: 1059-1524,1939-4586
DOI: 10.1091/mbc.e16-08-0575